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Abstract

The Land Transformation Model (LTM), which couples geographic information systems
(GIS) with artificial neural networks (ANNSs) to forecast land use changes, is presented here.
A variety of social, political, and environmental factors contribute to the model’s predictor
variables of land use change. This paper presents a version of the LTM parameterized for
Michigan’s Grand Traverse Bay Watershed and explores how factors such as roads, high-
ways, residential streets, rivers, Great Lakes coastlines, recreational facilities, inland lakes,
agricultural density, and quality of views can influence urbanization patterns in this coastal
watershed. ANNs are used to learn the patterns of development in the region and test the
predictive capacity of the model, while GIS is used to develop the spatial, predictor drivers
and perform spatial analysis on the results. The predictive ability of the model improved at
larger scales when assessed using a moving scalable window metric. Finally, the individual
contribution of each predictor variable was examined and shown to vary across spatial scales.
At the smallest scales, quality views were the strongest predictor variable. We interpreted the
multi-scale influences of land use change, illustrating the relative influences of site (e.g. quality
of views, residential streets) and situation (e.g. highways and county roads) variables at dif-
ferent scales. © 2001 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Changes in land use result from the complex interaction of many factors including
policy, management, economics, culture, human behavior, and the environment
(Dale, O’Neill, Pedlowski, & Southworth, 1993; Houghton, 1994; Medley, Okey,
Barrett, Lucas, & Renwick, 1995; Richards, 1990; Vesterby & Heimlich, 1991;
Wilder, 1985). An understanding of how land use changes occur is critical since
these anthropogenic processes can have broad impacts on the environment, altering
hydrologic cycles (Steiner & Osterman, 1988), biogeochemical dynamics (Flintrop et
al., 1996), size and arrangements of natural habitats such as forests (Dale et al.,
1993) and species diversity (Costanza, Kemp, & Boynton, 1993). Changes to land
use can also affect local and regional economies (Bingham et al., 1995; Burchell,
1996). This paper illustrates how combining geographic information systems (GIS)
and artificial neural networks (ANNs) can aid in the understanding the complex
process of land use change.

A GIS-based Land Transformation Model — LTM (Pijanowski, Gage, Long,
& Cooper, 2000) was developed to forecast land use change over large regions.
This model can be configured to use a variety of socioeconomic, political and
environmental inputs. The LTM can link changes in land use to ecological pro-
cess models, such as groundwater flow and solute transport (Boutt et al., 2001)
and forest cover change (Brown, Duh, & Drzyzga, 2000; Brown, Pijanowski, &
Duh, 2001). It can also provide local land use planners and regional resource
managers with information about the potential effects of land use change on the
environment.

ANNSs are powerful tools that use a machine learning approach to quantify and
model complex behavior and patterns. ANNs are used for pattern recognition in a
variety of disciplines, such as economics (Fishman, Barr, & Loick, 1991), medicine
(Babaian, Miyashita, Evans, Eshenbach, & Ramimrez, 1997), landscape classifica-
tion (Brown, Lusch, & Duda, 1998), image analysis (Fukushima, Miyake, &
Takayuki, 1983), pattern classification (Ritter, Logan, & Bryant, 1988), climate
forecasting (Drummond, Joshi, & Sudduth, 1998), mechanical engineering (Kuo &
Cohen 1998), and remote sensing (Atkinson & Tatnall, 1997). The use of neural
networks has increased substantially over the last several years because of the
advances in computing performance (Skapura, 1996) and the increased availability
of powerful and flexible ANN software.

This paper provides an update on the development of the LTM (Pijanowski,
Machemer, Gage, Long, Cooper, & Edens, 1995; Pijanowski et al., 2000) by illus-
trating an application of ANNs and GIS to model land use change. The principal
objective of this paper is to demonstrate how GIS and neural network tools can be
used to forecast land use changes over large regions. Specifically, we present:

1. the basic principles of ANNSs as they apply to land use change modeling;

2. the use of GIS to develop spatial data layers for use as inputs to the ANNSs;

3. methods for quantifying the model’s predictive ability and the relative con-
tribution of input variables across multiple scales; and
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4. an application of the model that (1) develops a control run of the model within
Grand Traverse County, Michigan, and (2) illustrates the extension of the
county level model for predicting development patterns within the six-county
Grand Traverse Bay Watershed.

2. Background
2.1. ANNs

ANNs were developed to model the brain’s interconnected system of neurons so
that computers could be made to imitate the brain’s ability to sort patterns and learn
from trial and error, thus observing relationships in data. Rosenblatt (1958) is
credited with developing one of the first artificial neural networks when he created
his “perceptron”. The perceptron (Fig. 1A) consists of a single node, which receives
weighted inputs and thresholds the results according to a defined rule. This type of
simple neural machine is capable of classifying linearly separable data and per-
forming linear functions.

The multi-layer perceptron (MLP) neural net described by Rumelhart, Hinton,
and Williams (1986) is one of the most widely used ANNs. The MLP consists of
three layers: input, hidden, and output (Fig. 1B) and thus can identify relationships
that are non-linear in nature. ANN algorithms calculate weights for input values,
input layer nodes, hidden layer nodes and output layer nodes by introducing
the input in a feed forward manner, which propagates through the hidden layer
and the output layer. The signals propagate from node to node and are modified by
weights associated with each connection. The receiving node sums the weighted
inputs from all of the nodes connected to it from the previous layer. The output
of this node is then computed as the function of its input called the “‘activation

I 1y H, O,

Fig. 1. A simple perceptron (A) and a multi-layer perceptron (B) illustrating input layers, hidden nodes
and output layers.
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function”. The data moves forward from node to node with multiple weighted
summations occurring before reaching the output layer.

Weights in an ANN are determined by using a training algorithm, the most popular
of which is the back propagation (BP) algorithm. The BP algorithm randomly selects
the initial weights, then compares the calculated output for a given observation
with the expected output for that observation. The difference between the expected
and calculated output values across all observations is summarized using the mean
squared error. After all observations are presented to the network, the weights are
modified according to a generalized delta rule (Rumelhart et al., 1986), so that the
total error is distributed among the various nodes in the network. This process of
feeding forward signals and back-propagating the errors is repeated iteratively (in
some cases, many thousands of times) until the error stabilizes at a low level.

2.2. Land use change models

Models of land use change serve as useful tools for (1) exploring the various
mechanisms by which land use change occurs and the social, economic, and spatial
variables that drive it (Batty & Longley, 1994; deKoning, Verburg, Veldkamp, &
Fresco, 1999), (2) projecting potential future environmental and economic impacts
of land use change (Alig, 1986; Theobald, Miller, & Hobbes, 1997), and (3) evalu-
ating the influence of alternative policies and management regimes on land use and
development patterns (Bockstael, Costanza, Strand, Boyton, Bell, & Wagner, 1995).
Although some approaches focus on modeling aggregate land use amounts within
areal units, like counties (Alig & Healey, 1987), models that predict the spatial pat-
terns of land use provide more information with which to evaluate the impacts of
change. To address the multi-scale nature of land use change drivers, some models,
like the CLUE model of de Koning et al. (1999), have used regional and global scale
drivers to determine the aggregate amounts of change and geographic and landscape
scale drivers to determine its pattern. This is the adopted approach for development
of the Land Transformation Model. Artificial neural networks, as described in this
paper, are used to determine the location of land use change using landscape scale
variables given a certain amount of change determined by regional and global
scale variables. In this paper, local population and land use change data are used as
a simplified approach to determining the amount of change.

Theobald and Hobbs (1998) described two basic types of spatially explicit land use
change models: regression-type models and spatial transition-based models.
Although their analysis of the former type focused on the logistic regression to
implement the regression based models, our use of ANNs clearly fits within this
category of models. The goal of these models is to establish functional relationships
between a set of spatial predictor variables that are used to predict the locations
of change on the landscape. The variable values and actual instances of land use
change are typically observed from historical data and used to establish functional
relationships that can be used to extrapolate land use change probabilities into
the future. The spatial transition models are an extension of the aspatial Markov
technique and a form of stochastic cellular automata (CA; Theobald & Hobbs,
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1998, p. 66). Cellular automata incorporate simple rules about spatial adjacency
effects that govern system dynamics and give rise to emergent behaviors and pat-
terns that are usually more complex than those generated by simple equilibrium
models (Batty & Longley, 1994; Clarke, Gaydos, & Hoppen, 1997), CA models are
quite valuable for describing system dynamics and behavior (Theobald & Hobbs,
1998), but the focus of this paper is on an application of the computationally simpler
regression type model.

The value of the regression-type models is that the relative contribution of differ-
ent variables for predicting a given land use change is easily obtained. Because of the
spatial nature of many of the input variables, integration with GIS is essential. GIS
allows users to manage and analyze spatially explicit data associated with the mod-
els. For example, GIS can aid modelers in building input variables for the models,
identifying spatial heterogeneity or pattern in data (Openshaw & Clarke, 1996),
quantifying observed and/or predicted temporal changes in spatial pattern (de
Koning et al., 1999), and assessing factors that operate across a variety of scales (Qi
& Wu, 1996). Most GIS-based models of land use change use data stored in the
raster data structure (Clarke et al., 1997; Landis, 1994; Veldkamp & Fresco, 1996)
because the structure simplifies the representation of space by breaking it into many
units of equal size and shape. Further, remotely sensed data, which is inherently
grid-based, is often used for model validation and calibration.

23. LTM

The LTM follows four sequential steps: (1) processing/coding of data to create
spatial layers of predictor variables; (2) applying spatial rules that relate predictor
variables to land use transitions for each location in an area; the resultant layers
contain input variable values in grid format; (3) integrating all input grids using one
of three techniques; and (4) temporally scaling the amount of transitions in the study
area in order to create a time series of possible future land uses. The GIS portion of
the LTM is encoded in ESRI’s (2000) ArcView GIS 3.2 Avenue scripting language.
A collection of routines written in C is used to process and analyze data.

In Step 1, processing of spatial data, inputs are generated from a series of base layers
that are stored and managed within a GIS. These base layers represent land uses (such
as agriculture parcels and urban areas) or features in the landscape (e.g. roads, rivers,
lakeshores). Grid cells are coded to represent predictors as either binary (presence = 1
or absence = 0) or continuous variables depending on the type of attribute.

For Step 2, applying spatial transition rules, inputs are developed using a set of
spatial transition rules that quantify the spatial effects that predictor cells have on
land use transitions (Pijanowski et al., 2000, for details). We use four classes of
transition rules: (1) neighborhoods or densities; (2) patch size; (3) site specific char-
acteristics; and (4) distance from the location of a predictor cell. Neighborhood
effects are based on the premise that the composition of surrounding cells has
an effect on the tendency of a central cell to transition to another use. Patch sizes
relate the variable values of all cells within a defined patch (e.g. parcel) to likelihood
of land use transition. Site-specific characteristics are values assigned to a cell based
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on biophysical or social characteristics that are specific to each grid cell. An example
of a site-specific characteristic is the location of quality views. The distance spatial
transition rule relates the effect of the Euclidean distance between each cell and the
closest predictor variable.

Certain locations are coded so that they do not undergo transitions. This is
necessary for areas within which development is prohibited, such as public lands.
We code cells with a “0” if a transition cannot occur; all other locations are assigned
a “1”. All such layers are then multiplied together to generate one single layer of
“exclusionary zones.”

Step 3, integration of predictor variables, one of three different integration methods
are used: multi-criteria evaluation (MCE), ANNs, and logistic regression (LR). Each
integration procedure requires a different type of data normalization. Although we
only present information relevant to the ANN integration method here, Pijanowski
et al. (2000) described the approach used with the MCE method. With all of the
integration methods, the cell size (100x 100 m in the present analysis) and analysis
window are set to a fixed base layer. The output from this step is a map of “‘change
likelihood values™, which specifies the relative likelihood of change for each cell
based on the ANN result given for the cell’s aggregate value for change derived from
the total of predictor variable values.

In Step 4, temporal indexing, the amount of land that is expected to transition to
urban over a given time period is determined using a ““principle index driver”” or PID
(Pijanowski et al., 2000). This paper describes two methods for calculating the
PID. The first method involves simply calculating the amount of area that underwent
transition to urban use based on analysis of historical land use data. Future projec-
tions can be made for each 10-year time step by assuming that the same number of
cells will transition to urban in each 10-year period as in the observed 10-year period.
However, we recommend against using this method for projection unless future
demographic projection for the study area are not available. Our use of this approach
is used here merely to test the LTM’s ability to predict the spatial patterns of change.

The second approach to calculating the PID is to base its value on the population
growth (i.e. number of people) over a time interval (i.e. number of years) for a
region. This might include: (1) applying population growth statistics to subregions
and forecasting subregions separately, output of which is integrated within a GIS; or
(2) adding all population projection estimates for subregions (such as municipalities,
counties or states) and using this information to forecast the entire region at
the same time. By using population and land use data for an initial time period,
per capita requirements for land (i.e. the number of hectares of developed land per
person) are calculated such that the total amount of new urban land at a later time is:

d
U(t) = (5) x A(1) (D

where U is the amount of new urban land required in the time interval ¢, dP/dt is the
number of new people in any given area in a given time interval and A4 is the per
capita requirements for urban land. In this paper, we illustrate the first method of
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using Eq. (1); namely, using county population projections to scale our land use
changes into the future.

The PID is used to determine the number of cells that need to transition to urban.
Projections are made by selecting the appropriate number of cells in priority order,
which is based on the change likelihood value for that cell (determined in Step 3).
The lowest change likelihood value required to transition the appropriate number of
cells is referred to as the critical threshold value (CTV).

3. Methods
3.1. Study area and data sources

Michigan’s Grand Traverse Bay Watershed (GTBW) was selected as the test site for
this project. The GTBW, located in the northwestern portion of Michigan’s Lower
Peninsula (Fig. 2), is one of the most rapid population growth and land use change
regions in the USA (Vesterby & Heimlich, 1991). The modeling extent is the six
Michigan counties that comprise the watershed: Grand Traverse, Kalkaska, Antrim,
Leelanau, Charlevoix and Benzie. From 1970 to 1997, resident population in the
watershed nearly doubled (US Census Bureau, 1998). Traverse City, with a resident
population of approximately 18,000 (oftentimes having a seasonal tourist population
exceeding 500,000) is the largest city in the watershed. Land use in the GTBW is pre-
dominantly forest (49%) and agriculture (20%). Much of the forested portions of this
watershed are managed within the Pere Marquette State Forest, which encompasses
most of the upland reaches of the Boardman River tributaries (Fig. 2). Urban land use
comprises about 6% of the total area of the watershed. The other main land covers
are open herbaceous/shrub/grasslands (15%), water (9%), and wetlands (1%).

The MiRIS (Michigan Resource Information System) database (developed around
1980 from 1:24,000 aerial photography) was used as the source of land use data in this
project. For the present application of the LTM, all land use codes were reclassed to
Anderson Level I land uses (Anderson, Hardy, Roach, & Witmer, 1976). All land use
files were then rasterized at a resolution of 100x 100 m. MiRIS line files, digitized
from 1:24,000 scale topographic maps, were integrated with our database to represent
the transportation network and locations of rivers, lakes, as well as the Grand Tra-
verse Bay shoreline to provide the appropriate inputs to the GIS-based LTM. USGS
digital elevation models (DEM), corresponding to the 7.5-min topographic quan-
drangles covering the watershed, were then resampled to 100x100 m cell sizes.
Boundaries for public lands were digitized from county digital DRG databases.
Locations of recreational sites, such as golf courses, casinos, ski lodges, and marinas
were obtained from published county road maps and stored as point coverages.

3.2. Implementing the LTM

For this project, the LTM was applied to two groups of runs. The first run (referred
to as the control run) was used to project the pattern of urban land development in
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Fig. 2. Map of Michigan’s Grand Traverse Bay Watershed counties and important locations within the
watershed.

1990 using an ANN trained on the actual changes between 1980 and 1990 solely for
Grand Traverse County. The second run is an extension of the same ANN in order
to project 1990 urban land development across all six counties in the watershed. The
first three steps of LTM implementation (described earlier) were identical for
the two runs; it is the fourth step that distinguishes them. The land use data-based
approach to indexing change was used for the control run. Since 1990 land use data
were not available for the entire watershed, the population-based approach for
implementing projections was used in the second run.

3.3. GIS-based predictor variables

Ten predictor variables and the exclusion zones were compiled in Arc/Info Grid
format (Table 1; Fig. 3) using the LTM GIS Avenue interface. The agricultural
density variable represents the amount of agriculture, from the 1980 land use data-
base, within a 1 km radius surrounding each cell. This variable describes the degree
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to which the landscape is dominated by agricultural land uses. Agriculture can be
seen as an amenity on the landscape that attracts development. However, it is pos-
sible that agricultural land use can serve as an impediment to development, espe-
cially in this area where agricultural activities are specialized (vineyards and other
fruit production) and profitable.

For the variables of county roads distance, highway distance, shoreline distance,
inland lake distance, and river distance, the minimum Euclidean distance to each
feature was calculated. These features serve to either improve the access of the site to
larger urban areas (i.e. county roads and highways) or to increase the amenity value
of a site (i.e. shoreline, inland lakes, rivers). The urban distance variable was the
minimum distance of each cell to an urban cell, from the 1980 Grand Traverse
County land use database. Since access to urban services affects development pat-
terns, it is expected that sites nearer to existing urban land uses would be more likely
to develop. Distance from recreation sites, which were coded as point coverages, was
also used as a predictor variable. For view quality, the height above lake level
and the distance from the lakeshore were calculated for every location in the water-
shed. The sine of the angle of incidence of a line-of-sight from each location in the
watershed to the lake was then calculated and used as a surrogate for quality of
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Table 1

Summary of the LTM predictor variables used for the Grand Traverse Bay Watershed application

Variable name

Description

Agricultural density

Highway distance
Inland lake distance

Lakeshore distance

River distance

County road distance
Residential street distance
Urban distance
Recreation distance

Quality views

Amount of agricultural land that surrounds each location within a

1 km radius

Distance to nearest highway

Distance to nearest inland lake (not including Lake Michigan or
Grand Traverse Bay)

Distance from the lakeshore along Lake Michigan and Grand Traverse Bay
Distance from rivers and streams; not including intermittent streams
Distance to nearest county road

Distance to nearest residential street

Distance to 1980 urban use

Distance from a major recreational site, such as golf courses, casinos,
ski slopes and marinas

A quality of view estimate derived from a combination of proximity to

the bay or Lake Michigan and elevation above lake level

view. Larger angles represent locations that are highly elevated above the bay and
are close. These locations are hypothesized to be in great demand for residential use.

The exclusion zone for this execution of the model was composed of the following
GIS layers: areas that were urban in 1980; locations of open water; locations of
wetlands; locations of public land (e.g. local, state and federal parks) and locations
of current transportation corridors.

3.3.1. ANN-based integration

In order to develop a network with adequate predictive capacity, it was necessary
to train and test the ANN with different input data (Skapura, 1996). Training
involves presenting input values and adjusting the weights applied at each node
according to the learning algorithm (e.g. back-propagation). Testing presents a
separate data set to the trained network independently to calculate the error rate.
For these reasons, ANNs were applied to the prediction of land use change in four
phases: (1) design of the network and of inputs from historical data; (2) network
training using a subset of inputs; (3) testing of the neural network using the full data
set of the inputs; and (4) using the information from the neural network to forecast
changes.

The ANN in this project is a feed forward network with one input layer, one
hidden layer and one output layer. The Simple Backpropagation Algorithm was
used as the learning process. SNNS (Stuttgart’s Neural Network Simulator) version
4.2 was used for the design, training and prediction of the ANN (Zell et al.,
1996). The neural network was designed to have a flexible number of inputs
depending on the number of predictor variables presented to it, an equal number of
hidden units as input units and a single output. All input grids, which existed in Arc/
Info Grid format, were then normalized to a range from 0.0 to 1.0 and converted
into ASCII representations (called a pattern file), which is the required format for
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SNNS. The pattern file contained information from the 10 final input grids and
one output file so that each line in the pattern file corresponded to one location. The
output of the ANN represents the likelihood of a non-urban cell changing to urban.
A change likelihood of zero indicates “‘no readiness’” to change whereas a change
likelihood of one indicates the “highest readiness” to change to urban.

To avoid over-training of the network (Skapura, 1996), the neural network was
trained with a partial set of data by providing it with data from every other cell
in the county. To further reduce over-fitting, the cells in a cycle were first presented
to the network in random order (Zell et al., 1996). A cycle is defined as one complete
presentation of all training cells to the network. The network was trained with the
training data and the overall mean squared error generated by SNNS and each cycle
was stored in a file for analysis. Based on these results, it was concluded that about
4000 cycles were adequate to stabilize the error level to a minimum value. Thus, each
model run was set for 5000 cycles, which meant that the entire pattern file would be
presented to the network 5000 times.

The ANN was tested as follows: First, the network files generated from the train-
ing exercise were applied to a pattern file that contained all of the cells in the county
(except those within the exclusion zone). SNNS used the pattern file and the network
file to generate an output file of activation values, which is called a ““result file”’. The
result file contains values ranged from 0.0 (no likelihood of changing to urban) to
1.0 (highest likelihood of changing to urban). Next, the GIS was used to determine
that 2073 cells transitioned into urban in Grand Traverse County during the 10-year
period 1980-1990 (i.e. the first approach to PID calculation). Thus, 2073 cells were
selected from the result file that had the greatest change likelihood values; these cells
were then classification as new urban. Since there were many cells that contained the
same change likelihood values, selecting the change likelihood values at the 2073 cell
threshold required a random selection from among the remaining cells to transition
from the population of cells that had the same change likelihood value.

Testing was completed by comparing those cells that were observed to transition,
based on the data, with those cells with the highest likelihood of transition, based on
the model. The following metric was then used to assess the performance of the
model:

No. of cells predicted to change
No. of cells that transitioned (i.e. 2073)

2

3.3.2. Evaluating the model

Two questions were raised in regard to the predictive ability of the ANN version
of the LTM: (1) does the model predict the locations of urban development accu-
rately? and (2) what predictor variables were found most influential in the model’s
ability to identify urban land use change?

To address the first question, model results were overlaid from the control run at
the county level with observed changes in land use from 1980 to 1990. A layer was
created with the following codes:
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0=no observed change and no predicted change;

1 =observed change but not predicted by the model;

2=no observed change but change predicted by the model;
3 =observed change and predicted change.

The resulting display (Fig. 4) was used throughout the model building process in
order to visualize the spatial distribution of the two types of error (codes 1 and 2) for
Grand Traverse County.

Since errors tended to be spatially autocorrelated (i.e. errors of the same type tend
to occur in multi-pixel patches), a modified version of Costanza’s (1989) scalable
window goodness of fit algorithm was applied to assess predictability across spatial
scales. Our approach entailed creating window sizes of 3x3, 5x5, 7x7 and so on,
across the entire county grid, and searching for cells coded as “1°” and ““2” within
the window. For each pair of “1” and a “2” that were found in the window, the
number of correct predictions (starting with the number of 3s for the entire region)
were incremented by one. Once they were added to the counter, each “1” and
“2” were removed from the database so that they would not be double counted as
the window frame shifted. The window was shifted by one cell at a time so that the
entire study area (the county) was covered. The proportion of correct predictions
(No. predictions/No. cells transitioning in the observed database) was then plotted
against window size.

The influence of each predictor variable on model performance (question 2) was
quantified by creating 10 alternative versions of the model, each version created by
dropping one variable out to create nine-predictor variable models, and repeating
the training exercise described earlier. New network files were created for each
model and then testing was repeated by presenting a pattern file with nine predictor
variables and the network file created from the training to generate result files used
to determine transition locations. The scalable window index was then calculated for
each nine-variable model. The difference in goodness of fit between the 10-variable
model and the 10 versions of the nine-variable model were then plotted in order to
assess the relative power of each predictor variable has on model performance.

3.3.3. Applying the model to the watershed

The ANN generated from the county control run was used to scale-up our fore-
casts to the entire watershed. In this run, 1980 MiRIS land use and line files (e.g.
roads and rivers) were used to create predictor variable inputs for the entire water-
shed region. Eq. (1) was used to determine the number of cells that would transition
across the entire watershed for four decadal time steps, to the years 1990, 2000,
2010, and 2020. Projected population estimates for these time periods were obtained
from the US Census Bureau. Table 2 contains a summary of the number of urban
cells per person for each county and the number of future urban cells required given
the projected population growth for each county. Note that Grand Traverse County
has a population density that is twice that of the other counties.

Between 1980 and 1990, 9374 people were added to Grand Traverse County. The
number of cells that transitioned were 2073, thus each person added between 1980
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and 1990 required 4.52 cells (or 0.452 ha) of urban land. Over 92,000 people will be
added to the six county area between 1980 and 2020, (Table 2) representing an
increase of 73% in total population. Percentage decadal growth for each county is
expected to average around 13%, with many counties potentially increasing total
population by nearly 20% in some 10-year periods (Table 2).

4. Results and discussion
4.1. Model performance

Of the 63,744 cells that could have undergone transition in Grand Traverse
County the ANN estimated that, 56,762 (or 89.0%) of these had change likelihood
values of 0.0 (or no likelihood that these cells could transition to urban) while 208
had likelihood values of 1.0. Of the 2073 cells with the highest change likelihood
values, 581 (28.0%) had values that were greater than or equal to 0.90. The critical
threshold value, which is the lowest change likelihood value selected for 2073 cells to
transition during the 10-year period, was 0.28. These results suggest that the model
does well at separating change and no change.

Only 3.25% of all non-exclusionary areas changed to urban in the observed
databases; thus a great majority of the area did not undergo urbanization. How-
ever, our results show that the ANN has a more difficult time learning the char-
acteristics that lead to change than those that lead to no change, given that a critical
threshold value of 0.28 was used to transition enough cells to urban during this
10-year time step. Increasing the critical threshold may require: (1) more informa-
tion about change, and/or (2) knowledge about specific non-spatial aspects
of change that were not provided as input to the model. More information about
change could mean that it may be necessary to model a large enough area so that an
adequate number of cells that undergo transition are provided to the neural net.
Alternatively, longer time intervals between the land use changes contained in
databases (e.g. larger than 5-10 years) may be needed to supply the neural network
with enough locations that changed. Learning about change will never be 100%
complete given that urbanization has elements of both unpredictability and likely
has aspects that are non-spatial. For example, demographic factors, such as the age
of a farmer, could be very important to what locations transition from agriculture
to urban. In the USA, many retiring farmers are not passing along their farms to
their children. More research is needed to assess the importance of both of these
elements to the predictability of this and other regression type models that use GIS
inputs.

For the execution of the model version presented here, the proportion of transi-
tioned cells (using Eq. 2) that were predicted correctly was 0.46 (i.e. 941/2073). This
represents the accuracy of the model at a 100x100 m cell size. The proportion of
correct predictions using the goodness of fit metric versus window size is shown in
Fig. 5. Note that within a window size of 1 km (i.e. 10 cells), the improvement of the
model increases to a 0.65 goodness of fit. As expected, the goodness of fit approaches
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Fig. 5. Goodness of fit metric plotted across window sizes. Note that because the cell size is 100 m, a
window size of 10 corresponds to a 1 km window.

1.0 with very large window sizes. These values suggest that the ANN is learning well
the conditions that give rise to urban development.

4.2. Relative effect of predictor variables

We compared the predictive ability of the 10 versions of the reduced-variable
model with that with the full complement of predictor variables. We subtracted the
goodness of fit for the full model from that for each of the nine-variable models
across all of the window sizes. The resultant value, which could be positive or
negative, represents the relative effect, or contribution, of each predictor variable on
the model performance (Fig. 6). Note that all predictor variables have a positive
influence on the goodness of fit for small window sizes. The predictor variable with
the most influence at small window sizes (< 10) is the location of quality of views.
For small window sizes (<5) the rank order of predictor variables according their
influence on the model performance, after quality of views, (Fig. 6) is: distance
to previous urban, distance to residential streets, distance to highways, distance to
recreational facilities, distance to rivers, density of agriculture, distance to inland
lakes, distance to county roads, and distance from lakeshore.

The relative influence of the predictor variables changes over multiple scales
(Fig. 6), and these changes can be used to interpret the scale over which the variables
influence land use change. The differential scale of influence of the variables was
evident in the variables describing road access. The influences of both county roads
and highways increased with distance to level off at about 2.5 km, whereas the
influence of residential streets was highest at the shortest distances and dropped to
about zero influence at a scale of about 3.5 km. County roads and highways relate
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county road distance (CRD)

recreation distance (RD)
highways distance (HD)
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Fig. 6. Goodness of fit metric difference between each of the nine-variable models and the model con-
taining the full compliment of predictor variables.

more to the regional accessibility of a location (i.e. its situation) than to its local
character (i.e. site). Access to residential streets describes the local character of the
place. Similarly, the influence of the view variable decreases in importance with
increasing window size. Because the value of a striking view declines rapidly as one
leaves a given property, the variable tended to have a more localized influence on
likelihood of urban development.,

Interestingly, the curves in Fig. 6 appear to adhere to two major inflection points.
At the first, a window size of about seven (i.e. 700 m), nearly all of the predictor
variables change direction from a negative slope (decreasing in their relative affect
on model performance) to a positive slope. Also at this window size, ranking of
relative influence of variables is very volatile. This scale appears to reflect a natural
break in the scales of influence, from local scale influence at smaller window sizes to
more regional scale influences at larger window sizes. The second inflection point
occurs at a window size of about 19 (i.e. 1.9 km) and reflects a stabilization of
the relative effects of each variable on model performance at large window sizes. The
volatility of influence is diminished at larger scales, probably because the changes in
overall fit of the model (Fig. 5) are much smaller at larger scales.

4.3. Watershed-scale land use projections

Four projections for the six county area were produced for the years 1990, 2000,
2010, and 2020 (Fig. 7) using the PID values derived from US Census Projections
(Table 2). Fig. 7 shows the results of this regional forecast of land use changes. A
comparison of 1980 and 2020 land uses shows that most of the new urban develop-
ment is predicted to occur along Crystal Lake (Benzie County), along the US-31
east-west thoroughfare between Beulah (Benzie County) and Duck Lake (Grand
Traverse County), around Glen Lake (Leelanau County), along the Five Mile Road
corridor especially around Lake Arbutus which connects the cities of Acme and
Kingsley (Grand Traverse County), areas around the city of Kalkaska (Kalkaska
County), the cities of Elk Rapids and Eastport in Antrim County, and around the
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city of Charlevoix in Charlevoix County. These model projections are, anecdotally,
consistent with current development patterns observed in the watershed. Develop-
ment is also projected to occur along the western shore of the West Arm of Grand
Traverse Bay from Greilickville to just south of Suttons Bay (Leelanau County).
This area also contained the largest area of quality views in the watershed. These
projections illustrate how the ANN could be trained on relationships between
urbanization and all of the predictor variables that occurred in Grand Traverse
County and, through our approach, applied to the same predictor variables scaled
to a larger region to provide reasonable results for these five other counties in the
watershed.

5. Conclusions

The Land Transformation Model presented in this paper examines the relation-
ship between 10 predictor variables and urbanization. The model performs with a
relatively high predictive ability (46%) at a resolution of 100x 100 m. Using a scal-
able window approach, we show that model prediction increased substantially when
results are aggregated over larger window sizes such that, at a resolution of 1 km,
the model predicted changes to urban which were correct 65% of the time. By
developing 10 versions of the LTM, each with one of the variables removed, we
assessed the relative contributions of each variable on model performance. The
location of high quality views was the best predictor of new urban during the 1980-
1990 period in Grand Traverse County.

Using the ANN pattern file generated for the watershed, we applied the network
file created from the control run to create a file with changing likelihood values for
each location in the entire six county area. The forecasts were indexed to population
projections, using each county’s population projection and per capita urban use
requirements. The forecasts of new urban growth for the counties not used to train
the model appeared reasonable and were concentrated in tourist towns near inland
lakes or along the lakeshore.

We made several assumptions in order to keep the model simple. First, we
assumed that the pattern of each predictor variable remained constant beyond 1990.
For example, the location of roads and highways are likely to change (e.g. new roads
will be built) and they may respond to changes in land use. The model can reflect
changes in transportation if updated layers are available and are added between time
steps and then applied to the same neural network file. Second, spatial rules used to
build the interactions between the predictor cells and potential locations for transi-
tion are assumed to be correct and remain constant over time. It is possible for
people to respond to the density of inland lakes (one type of spatial rule) rather than
distance to any inland lake (an alternative spatial rule). Third, the neural network
itself was assumed to remain constant over time. Thus, the relative affect of each
predictor variable is assumed to be stable. Finally, the amount of urban per capita
undergoing a transition is assumed to be fixed over time. Given the availability
of data (e.g. new roads, more temporal information about land use change and
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population estimates), it is possible to relax many of these assumptions in order to
examine the potential effect each of these assumptions have on the performance of
model forecasts.
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